Analysis of the Relativistic Brownian Motion in Momentum Space

نویسنده

  • Kwok Sau Fa
چکیده

We investigate the relativistic Brownian motion in the context of Fokker-Planck equation. Due to the multiplicative noise term of the corresponding relativistic Langevin equation many Fokker-Planck equations can be generated. Here, we only consider the Ito, Stratonovich and Hänggi-Klimontovich approaches. We analyze the behaviors of the second moment of momentum in terms of temperature. We show that the second moment increases with the temperature T for all three approaches. Also, we present differential equations for more complicated averages of the momentum. In a specific case, in the Ito approach, we can obtain an analytical solution of the temporal evolution of an average of the momentum. We present approximate solutions for the probability density for all three cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relativistic Brownian motion: from a microscopic binary collision model to the Langevin equation.

The Langevin equation (LE) for the one-dimensional relativistic Brownian motion is derived from a microscopic collision model. The model assumes that a heavy pointlike Brownian particle interacts with the lighter heat bath particles via elastic hard-core collisions. First, the commonly known, nonrelativistic LE is deduced from this model, by taking into account the nonrelativistic conservation ...

متن کامل

One-dimensional nonrelativistic and relativistic Brownian motions: A microscopic collision model

We study a simple microscopic model for the one-dimensional stochastic motion of a (non)relativistic Brownian particle, embedded into a heat bath consisting of (non)relativistic particles. The stationary momentum distributions are identified self-consistently (for both Brownian and heat bath particles) by means of two coupled integral criteria. The latter follow directly from the kinematic cons...

متن کامل

On time-dependent neutral stochastic evolution equations with a fractional Brownian motion and infinite delays

In this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional Brownian motion in a Hilbert space. We establish the existence and uniqueness of mild solutions for these equations under non-Lipschitz conditions with Lipschitz conditions being considered as a special case. An example is provided to illustrate the theory

متن کامل

Exact solutions for Fokker-Plank equation of geometric Brownian motion with Lie point symmetries

‎In this paper Lie symmetry analysis is applied to find new‎ solution for Fokker Plank equation of geometric Brownian motion‎. This analysis classifies the solution format of the Fokker Plank‎ ‎equation‎.

متن کامل

Relativistic Brownian Motion

We solve the problem of formulating Brownian motion in a relativistically covariant framework in 1 + 1 and 3 + 1 dimensions. We obtain covariant Fokker-Planck equations with (for the isotropic case) a differential operator of invariant d'Alembert form. Treating the spacelike and timelike fluctuations separately, we show that it is essential to take into account the analytic continuation of " un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006